Wind pollination (anemophily)

Flowers may be small and inconspicuous, as well as green and not showy. They produce enormous numbers of relatively small pollen grains (hence wind-pollinated plants may be allergens, but seldom are animal-pollinated plants allergenic). Their stigmas may be large and feathery to catch the pollen grains. Insects may visit them to collect pollen; in some cases, these are ineffective pollinators and exert little natural selection on the flowers, but there are also examples of ambophilous flowers which are both wind and insect pollinated. Anaemophilous, or wind pollinated flowers, are usually small and inconspicuous, and do not possess a scent or produce nectar. The anthers may produce a large number of pollen grains, while the stamens are generally long and protrude out of flower. Pollen is a fine to coarse powder containing the microgametophytes of seed plants, which produce the male gametes (sperm cells). Pollen grains have a hard coat that protects the sperm cells during the process of their movement from the stamens to the pistil of flowering plants or from the male cone to the female cone of coniferous plants. When pollen lands on a compatible pistil or female cone (i.e., when pollination has occurred), it germinates and produces a pollen tube that transfers the sperm to the ovule (or female gametophyte). Individual pollen grains are small enough to require magnification to see detail. The study of pollen is called palynology and is highly useful in paleoecology, paleontology, archeology, and forensics. Pollen itself is not the male gamete.[1] Each pollen grain contains vegetative (non-reproductive) cells (only a single cell in most f owering plants but several in other seed plants) and a generative (reproductive) cell containing two nuclei: a tube nucleus (that produces the pollen tube) and a generative nucleus (that divides to form the two sperm cells). The group of cells is surrounded by a cellulose-rich cell wall called the intine, and a resistant outer wall composed largely of sporopollenin called the exine. Pollen is produced in the 'microsporangium' (contained in the anther of an angiosperm flower, male cone of a coniferous plant, or male cone of other seed plants). Pollen grains come in a wide variety of shapes (most often spherical), sizes, and surface markings characteristic of the species (see electron micrograph, right). Pollen grains of pines, firs, and spruces are winged. The smallest pollen grain, that of the forget-me-not (Myosotis spp.), is around 6 m (0.006 mm) in diameter. Wind-borne pollen grains can be as large as about 90100 m. An allergen is any substance that can cause an allergy. In technical terms, an allergen is an antigen capable of stimulating a type-I hypersensitivity reaction in atopic individuals through Immunoglobulin E (IgE) responses.[1] Most humans mount significant Immunoglobulin E responses only as a defense against parasitic infections. However, some individuals may respond to many common environmental antigens. This hereditary predisposition is called atopy. In atopic individuals, non-parasitic antigens stimulate inappropriate IgE production, leading to type I hypersensitivity. Sensitivities vary widely from one person (or other animal) to another. A very broad range of substances can be allergens to sensitive individuals.